스테판-볼츠만 법칙을 이용해 태양상수를 추정해보자.
Stefan-Boltzman law
스테판-볼츠만 법칙은 단위면적당 방출되는 에너지의 총량과 흑체의 절대온도 사이의 관계식이다. 방출되는 복사 에너지는 절대온도의 네제곱에 비례한다. 이를 이용해 태양상수를 추정할 수 있다.
Computing the solar constant at the Earth
Computing the total energy emitting from the Sun and the Earth during 1 second. Assuming that the radius of the Sun and the Earth are about 675,000km and 6,400 km, respectively. Assuming that the distance between the Sun and the Earth is about 149,600,000km.
# Stefan-Bolzmann constant (Wm^-2K^-4)
s= 5.669e-8
# the total radiant energy per 1m^2 during 1 second
M_total_unit_sun = s*T_sun**4
M_total_unit_earth = s*T_earth**4
# surface area of the Sun and the Earth
# radius of the Sun and the Earth
r_sun = 675000*1000 #(m)
r_earth = 6400*1000 #(m)
def surface_area_of_sphere(radius):
return 4*pi*radius**2
surface_area_sun = surface_area_of_sphere(r_sun)
surface_area_earth = surface_area_of_sphere(r_earth)
# the total energy emitting
M_total_sun = M_total_unit_sun * surface_area_sun
M_total_earth = M_total_unit_earth * surface_area_earth
print(M_total_sun)
print(M_total_earth)
# the solar constant at the Earth
r_sun_to_earth = 149600000*1000 #(m)
solar_const = M_total_sun / surface_area_of_sphere(r_sun_to_earth)
print(solar_const)
Computed solar constant: 1398.4883799440274
'etc.' 카테고리의 다른 글
Lens equation (using Python) (0) | 2021.11.08 |
---|---|
Wien's displacement law (using Python) (0) | 2021.11.08 |
Planck's blackbody radiation law (using Python) (0) | 2021.11.08 |